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Adaptive computation is observed biologically when neuronal firing appears to depend on statistics

of synaptic input – such as variance and mean – instead of being fixed for a given neural system [1].

Since the resulting spikes rely on the associated context, the system encodes information about it to

resolve ambiguities between stimuli and spikes [3]. To achieve a better understanding of this complex

nonlinear phenomenon, adaptive computation was analyzed through the lens of the simple (yet

empirical) single-neuron Hodgkin-Huxley (HH) model. This was done with the hope of identifying

how simple parameters in the well-studied HH model could result in seemingly perplex behavior that

has yet to be fully explained theoretically. This literature review reveals that adaptive computation is

tied to the HH model’s parameters gK and gNa, which represent maximal conductances of voltage-

dependent potassium and sodium ion channels in the axon membrane. However, one has yet to

theorize a biological mechanism that explains how gK or gNa change due to input signal statistics.

I. INTRODUCTION

In physiology, cell-to-cell communication is achieved

via electrical impulses that travel across axons. This

communication is vital for life because it ensures sev-

eral key processes. For example, impulses govern the

autonomous mechanism by which someone withdraws

her hand from a sharp object on contact: Skin receptors

on the hand capture the stimulus (sharp object) into a

signal that is transmitted to the nervous system, which

in turn signals an arm muscle to contract so that further

exposure to the sharp object is avoided.

Impulses are transmitted across axons by means of

action potentials (AP), which occur when the membrane

potential of a specific axon location rapidly depolarizes

[6]. The voltage-gated ion channels in the membrane

are initially closed, maintained at a resting potential

specific to the region. If a threshold voltage is reached,

the ion channels open to allow inflow of sodium ions

Na+, which increases the membrane potential difference

further, causing more channels to open until all available

channels are open. This rapid influx of Na+ causes

the membrane polarity to reverse, stopping the Na+
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influx and forcing the cell to actively transport Na+

out. Finally, potassium ions K+ are activated, causing

them to leave cell and restore the membrane back to its

resting potential. This process is summarized in Figure 1.

FIG. 1. Plotting voltage measured across the cell membrane

against time, the events of the action potential can be related

to specific changes in the membrane voltage. (1) At rest, the

membrane voltage here is −70 mV. (2) The membrane begins

to depolarize when an external stimulus is applied. (3) The

membrane voltage begins a rapid rise toward +30 mV. (4) The

membrane voltage starts to return to a negative value. (5)

Repolarization continues past the resting membrane voltage,

resulting in hyperpolarization. (6) The membrane voltage

returns to the resting value shortly after hyperpolarization.

Source:[6]
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Due to the involvement of a threshold voltage, action

potentials function like digital events, where either

the membrane reaches the threshold and everything

in Figure 1 occurs, or the membrane does not reach

the threshold and nothing else happens. All AP peak

at the same voltage for a given context, so one is not

bigger than another. Thus, the person in the previous

example will experience more pain or stronger muscle

contractions only because multiple AP will be initiated,

and not because their amplitudes increase.

This “all or none” behavior led scientists to develop

the neural code to efficiently represent the sensory

world [3]. Several biological and computational models

have evolved over the last century to describe efficient

coding that matches the coding strategy to the statistics

of input signals. Of these, the Hodgkin-Huxley (HH)

model was one of the first to use computational methods

to describe how single-neuronal AP are initiated and

propagated. This Nobel prize-winning work fit ionic

conductance and AP data from squid giant axons into a

theoretically-justified model that is now a hallmark in

the literature. In it, the axon is modeled as a circuit and

described by nonlinear differential equations.

Even though the HH model is not the simplest, it

is experimentally more realistic than the theoretically-

simpler McCulloch-Pitts and Integrate-and-Fire models

[4]. Therefore, if one was to attempt understanding

how some complicated neural phenomenon relates to

both experimental reality and theoretical models, the

HH model provides a very reasonable starting point

due to its applicability to living systems and relative

simplicity. It is relatively simple because it is a single-

neuron model (as opposed to a many-layered neural

network), and simplifies several biological components by

categorizing them into functionally different components.

The complicated neural phenomenon explored in this

review is adaptive computation. In the context of

machine learning, adaptive computation refers to how

a computer algorithm makes a learning process more

efficient by dynamically changing the method used to

process information before finalizing output [7]. Usually,

this is a change in the number of steps required.

Somewhat similarly, in biology this term describes the

experimental observation by which neural systems adjust

their input-output properties in response to changes

in the statistical properties of the incoming stimulus.

Examples of such statistical properties are variance

(or standard deviation) and mean of synaptic input

current. To illustrate using a hypothetical example from

the familiar context of Figure 1, adaptive computation

could be when the axon temporarily lowers its threshold

voltage from −55 mV to −90 mV because the stimulus it

expects is unexpectedly very noisy (making its potential

to trigger necessary impulses ambiguous). The reader is

reminded that this is but a hypothetical example, since

such ‘extreme’ scenarios were not found in the literature

explored1. On the other hand, an experimentally-

observed example of adaptive computation that builds

off this hypothetical one is when adding noise to an

input signal increased the firing rate of neocortical

pyramidal neurons at low mean currents (but not high

mean currents) [2]. This in turn reduced the gain of

the system’s input-output relation. Therefore, in other

words, noisy “background” synaptic input appeared to

control the sensitivity of neurons, which continually

recalibrated their sensitivity under new contexts to best

represent the range of inputs they received.

However, despite advances in research, clear mecha-

nisms for how living systems realize2 adaptive compu-

tation are yet to be discovered [1–3]. A primary issue

underlying such discoveries is that adaptive computation

is inherently ambiguous: the meaning of a spike or a

pattern of spikes depends on context, and resolution

of this ambiguity requires that the system additionally

encode information about the context itself [1]. This

makes it hard to find a general replicable model system

for electrophysiological studies, as, for instance, the

highly specific conditions required to observe adaptive

computation in neurons of the fly visual system [1] are

different compared to those necessary to realize it in

1 Section II discusses this behavior in developing mouse cortex

neurons, where it is observed for a limited period.
2 Other general applications of adaptive computation in machine

learning, etc are not entirely clear either [7].
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the strikingly different developing mouse cortex neurons

[3]. Therefore, having to use diverse, inconsistent sys-

tems to theorize a shared, unobvious property (adaptive

computation) does not seem to be a straightforward task.

In an attempt to deconstruct this seemingly compli-

cated problem, it was applied to the HH model that was

just discussed. Through the model’s relative simplicity,

one may hope to gauge not only a common mechanism

for adaptive computation, but also insight on how it is

achieved physiologically.

The remainder of this literature review will have

the following structure: The next section presents an

overview of the HH model, and the section afterwards

will illustrate biophysical aspects of adaptive computa-

tion using existing studies. Potential ties between adap-

tive computation and the HH model will then be dis-

cussed, followed by a brief wrap-up of results.

A. Hodgkin-Huxley Model

To understand action potentials, Hodgkin and Hux-

ley performed experiments on the squid giant axon and

related its initiation and propagation to three different

types of ion current (sodium, potassium, and a leak

current that consists mainly of chloride ions). Specific

voltage-dependent ion channels, one for sodium and an-

other one for potassium, control the flow of those ions

through the cell membrane; which was modeled as a cir-

cuit as seen in Figure 2. A capacitor C represents the

cell membrane and has a voltage of u across it [5]. The

resistors R correspond to each voltage-dependent chan-

nel (Na+, K+ and leak current L that accounts for other

channel types which are not described explicitly). The

diagonal arrows across the resistors indicate that values

depend on whether the ion channel is open or closed3.

Additionally, each ion channel is associated by a battery

E because the associated active ion transport involves a

Nernst potential. Finally, the input signal is denoted by

the applied current I.

3 Caution: this is not adaptive computation because their values

do not dynamically change to reflect their environment!

Using elementary circuit physics and theoretical mod-

eling to fit experimental data, Hodgkin and Huxley for-

mulated the sum of the three ion currents that pass

through the cell membrane as:∑
k

Ik = gNam
3h(u−ENa) +gKn

4(u−EK) +gL(u−EL)

(1)

where the new parameters are: voltage-independent

conductance gL; maximum conductances gNa and gK

(which transmitted currents will have if all ion channels

are open); and ‘gating’ variables m, n and h that

model the probability that a channel is open at a given

time. m and h describe the activation (opening) and

inactivation (blocking) of Na+ channels respectively,

while n describes the activation of K+ channels. Each

of these gating variables is in turn controlled by an

ordinary differential equation (ODE) so that the entire

HH model comprises four coupled ODEs.

Introducing these gating variables was what allowed

Hodgkin and Huxley to successfully describe their ob-

servations mathematically by measuring how a channel’s

effective resistance changes as a function of time and

voltage. Notice that the applicability of this model to

the AP process in Figure 1 is pretty straightforward.

While the reader is referred to any basic exposition of

neurophysics (such as [5]) for specifics of the HH model,

a discussion of its limitations4 is vital to the issue of

understanding adaptive computation. This is because if

adaptive computation cannot be explained fully using the

HH model, it could very likely be accounted for by the

model’s limitations (in addition to insufficient research).

Limitations of The Hodgkin-Huxley Model

There are several limitations associated with the HH

model since its simplicity was arrived at only after com-

promising generalizable behavior via several assumptions

and data-fits from a specific species’s neuron5.

4 Recall that Section I discusses advantages of the HH model.
5 Squid giant axon.
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FIG. 2. Schematic diagram for the Hodgkin-Huxley model. Left: The semipermeable cell membrane separates the interior

of the cell from the extracellular liquid and acts as a capacitor. Right: Circuit diagram for typical HH neuron membrane.

Source:[5]

For instance, it is still not clear how the gating

variables m, n and h are controlled (both physiologically

and theoretically) [9]. This calls for further research

on defining the activation and inactivation of sodium

channels, and the activation of potassium channels. As

this review will elaborate in subsequent sections, this

mystery is crucial to the understanding of adaptive

computation.

Another limitation is the model’s validity only for

a membrane patch. Therefore, its applications at the

macromolecular nanoscale are dubious [8]. The issue

arises when the transmembrane voltage acquires a tran-

sient when it opens from a closed state. Additionally,

there is other experimental evidence to support the claim

that the HH model does not act alone. For example, the

speed of AP transmission is undefined in the model, but

ion diffusion measurements have shown that this is not

possible.

Furthermore, [9] illustrates how properties of AP

generated depend on the strength of input when the

HH model is programmatically realized in toy models.

However, this conflicts with the indisputable “all or

none” trait that characterizes an AP (Section I).

On a broader level, since the HH model involves 4

ODEs with 4 state variables (u(t),m(t), h(t), n(t)), the

system is hard to solve analytically for any set of initial

conditions. Therefore, scientists analyze its properties

using center manifold methods and bifurcations (using

I as a parameter) [5]. However, these methods do not

allow for a complete analysis involving all parameters at

a given time6, and this means that the model can hide

key information without warning.

Finally, since this is only a single-neuron model,

potential effects of many-layered neural networks on

adaptive computation will not be evident.

Any of the limitations discussed in this section might

be related to behavior of adaptive computation that can-

not be explained using the HH model.

B. Adaptive Computation

Since the general idea behind adaptive computation

should be clear from Section I, this section will present

experimental evidence of the phenomenon. Using this

and knowledge about the HH model from the previous

section, one will have sufficient tools to analyze adaptive

computation through the simple lens of the HH model.

To reiterate, adaptive computation describes the ex-

perimental observation by which neural systems adjust

their input-output properties in response to changes in

statistical properties of the incoming stimulus. There-

fore, appropriate experimental investigations usually

comprise electrophysiological measurements of AP gener-

ated by neurons subject to various electrical inputs con-

trolled by a computer.

6 For example, only two parameters can be studied using the center

manifold method.
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1. Adaptive Computation in Fly Visual System

In one study [3], motion-sensitive neurons in the fly

visual system (H1) were subjected to white-noise sig-

nals with variances that switched like a step-function (as

in Figure 3). It was observed that significant modula-

tions in firing probability required proportionately large

variations for an input signal with large dynamic range.

However, under different adaptation conditions, the fir-

ing probabilities in response to the same input differed by

orders of magnitude. This implied that the input-output

relation of a system adapts dynamically, and that the

system measured input in units proportional to the local

standard deviation.

FIG. 3. The stimulus was a white-noise velocity signal mod-

ulated by a square wave envelope that switches between two

values, σ1 and σ2, with some period T. Source:[3]

It was also observed that the decay time of an

output spike rate after an upward switch in variance

seemed to have a linear relationship to the input signal

variance’s frequency. However, for sinusoidal input, the

relationship was only a fraction of its frequency. This

suggested that the adaption observed depended on the

experiment’s design and that different mechanisms might

be responsible for different directions of adaptation.

Additionally, since it was discovered that different

aspects of adaptation occur on timescales that range

from tens of milliseconds to several minutes, they also

suggested a mechanism by which ambiguities in adaptive

code due to context are resolved: Rapid adaptation

leaves longer timescales in the response dynamics as a

nearly independent channel for information.

All these results provide evidence for traits of adaptive

computation that were discussed in this review’s intro-

duction. However, albeit illustrative of adaptive compu-

tation, [3]’s analysis does not provide much insight into

simpler single-neuron models because it does not provide

variables nor data that obviously correspond to parame-

ters of the HH model in Section I A. Therefore, a different

study was sought.

2. Adaptive Computation in Embryonic Mouse Cortex

Another electrophysiological study [1] explored the

question of how adaptive computation develops in

neurons7. Unlike the study in the previous subsection,

this work revealed specific aspects of a neural system’s

components that regulate adaptive computation. This

information might allow it to be connected to the HH

model!

This study found that adaptive computation emerges

during early development as an intrinsic property of

single neurons8 in mouse sensorimotor cortex neurons,

and that it can be modulated by changing the balance

of spike-generating currents.

As with the experiments on the fly visual system in the

previous subsection, these experiments too demonstrated

adaptive computation. However, they also revealed a

direct tie between the levels of adaptive computation

observed and the neurons’ developmental stage; specif-

ically with the latter’s effect on voltage-gated sodium

and potassium ion channels. Recall from Section I A

that the HH model involves parameters representing

both of these ion channels!

The next section elaborates on these results and their

direct application to the HH model.

II. ADAPTIVE COMPUTATION USING THE

HODGKIN-HUXLEY MODEL

The authors of [1] state that cortical neurons ‘learn’

adaptive computation early in their development. Since

it is known that: input current IK is handled in the stem

cell population of the cortex before the first neurons

7 Or in machine learning jargon: ‘how a neuron learns to adapt’.
8 This further supports the choice to adopt a single-neuron model

like HH.
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exit the cell cycle; INa can be detected even before

differentiating neurons migrate into the cortical plate;

and INa increases in density much faster than IK during

early postnatal development – the authors examined

how these changes in the maturing spike-generation

mechanism impacted the adaptive computational prop-

erties of cortical neurons.

They found that developing neurons move toward

a common intrinsic operating point and a stable ratio

of spike-generating currents (implying that adaptive

computation will be harder past this ‘learning point’).

Using Figure 1 to step back and bring the discussion into

perspective, this observation could be analogous to the

process by which a new neuron sets its own threshold

voltages for optimal performance in its environment.

However, unlike the ‘extreme’ hypothetical example

illustrated in Section I, these neurons ceased adaptive

computation after an optimal threshold voltage was

determined, and then maintained this value for the rest

of their lives.

To use this information about INa and IK, the authors

applied the HH model using the simulator NEURON

on data from electrophysiological experiments on mouse

cortex neurons. Since the maximal current ratio INa/IK

is related to the maximal conductance ratio gNa/gK by

definition, it helps to use notation commonly associated

with the HH model, as in Equation (1). The figure

illustrates an apparent relationship between gNa/gK and

adaptive computation.

By investigating the NEURON models’ gain-scaling

capabilities by stimulating firing with noise of different

standard deviations σi, the authors also discovered that

models with low gNa/gK had input-output relations which

did not scale completely with σi while input-output

relations from high gNa/gK models were nearly identical

for all σi. See Figure 5.

After even more investigations (that involved pharma-

cological methods to manipulate INa and IK), the au-

thors provided compelling evidence (similar to Figures 4

and 5) to the claim that adaptive computation is related

to the ratio gNa/gK. While this promising result provides

FIG. 4. The degree of adaptive computation Dσ quanti-

fied (in bits) for 148 model neurons with varying gNa and gK

conductance values, stimulated with two stimulus standard

deviations in input signal. Warmer colors indicate stronger

presence of adaptive computation. Source:[1]

some sense of direction as to how one could view adaptive

computation through the HH model (because it involves

the familiar parameters gNa and gK), it is far from paint-

ing a complete picture. The final section of this review

discusses why.

III. CONCLUSION

The previous section presents a relationship between

adaptive computation and a ratio of parameters from the

HH model, gNa/gK. While this is certainly some progress

in answering the original question of explaining adaptive

computation through the empirical HH model, the exact

mechanism through which it is brought about is unclear

both theoretically and physiologically. Although [1]

established some control over adaptive computation

via artificial pharmacological means to control gNa and

gK, this method is not representative of natural cell

membrane activities. Therefore, how exactly gNa and gK

are modified based on input signal statistics is not yet

clear.

Before continuing, it should be noted that the

experiments discussed in Section I B had their own

weaknesses (including extreme specificity to a unique

model system). For instance, the data for Figure 4

was generated only by a fraction of all possible neu-
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FIG. 5. Left: Scaled input-output range of σ for two model neurons with high and low gNa/gK. Right: Adaptive computation

Dσ (quantified in bits) plotted against gNa/gK for models stimulated with a large range of σ. Lines indicate mean Dσ values for

different levels of ∆σ. Source:[1]

ron models because only certain neurons would spike

for a given noisy signal9 [1]. Although such limita-

tions might make the gNa/gK relationship questionable,

its validity is affirmed by similar studies and at least

by the reputable profile of the journal it was published in.

It is easy to conjecture that the mysterious mecha-

nisms that dynamically determine gNa and gK values

might consequence directly from the HH model’s own

limitations. In Section I A, it was noted that further

research is needed to understand how the so-called

gating variables m, n and h of the model – that define

the probability of ion channel activation and inactivation

– acquire their values. From Equation (1) for the HH

model, it can be seen that the conductances 1/Ri (which

are not necessarily the maximal conductances gi) are

given by 1/RNa = gNam
3h and 1/RK = gKn

4 for sodium

and potassium ion channels respectively. Therefore, the

unsolved gating variable problem is bound to be related

to the issue of adaptive computation. This limitation of

the HH model, in addition to the several others discussed

9 Such case-dependent requirements for spiking reflects adaptive

computation’s context-dependent ambiguity.

in Section I A, might help identify potential directions of

further study for understanding adaptive computation.

However, they also question the HH model’s suitability

for tackling the problem.

To summarize these issues in layman’s terms, a reason

behind the HH model’s potential incompetence in the

context of this problem could be its lack of complexity.

In other words, it might be “too simple”, per the general

warning given by Drs. Einstein and Dudko about sim-

plifying reality into physical models. Indeed, the authors

of [1] applied an analysis similar to Section II to the

so-called Exponential Integrate-and-Fire model – which

is a model of the axon membrane that is theoretically

less simple than the HH model – and obtained a deeper

insight of adaptive computation.

Despite all its potential flaws, the HH model is

not a poor choice for an approach to understand the

complicated phenomenon that is adaptive computation.

As justified in this review’s introduction, this is due

to the model’s relative simplicity, its grounding in

experimental data, and the fact that it was actually

related to adaptive computation in some way.
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Evidently, more research is necessary to fully un-

derstand adaptive computation. To reiterate, what is

not clear is how a cell membrane changes its maxi-

mal conductances gNa and gK dynamically based on

statistical properties of input signals. Since statistics

are involved, perhaps a subsequent study could employ

a different perspective and investigate neural models

using methods from statistical mechanics. By somehow

reformulating this problem using canonical ensembles,

a desirable relationship between parameters of the HH

model and adaptive computation might be achieved.

Other perspectives may be pursued for more insight.

Finally, since this property appears intertwined to the

HH model, further studies might symbiotically provide

ways to improve the HH model’s limitations. Regardless,

the goal should be to strive for a simple mechanism that

will explain adaptive computation, not only to better our

understanding of a fundamental biological process that

has been taken for granted for decades, but also to give

us insight into adaptive computation in general learning

techniques from other disciplines including artificial in-

telligence, computer science, engineering, mathematics,

physics, neuroscience, and cognitive science.
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